

生産技術研究所 (マテリアル工学専攻)

JST さきがけ 京都大学・化学研究所

溝口照康

マテリアルズインフォマティクス 物質・分子探索ではなく

機械学習の有機的な融合により

膨大な候補構造の中から

結晶界面の構造決定

データ数が膨大になっている

スペクトル解釈

→構造決定に多大な労力が必要

界面構造決定の難しさ → 構造の自由度

例)モデル化された金属のCSL粒界

しかも界面の種類は無数! 対称Σ100以下 50種類以上 +非対称,ねじり,ランダム…

Candidate configurations (before optimization)

界面研究を加速=**構造決定の過程を加速**

構造決定の過程 = 最適値探索問題

by 仮想スクリーニング

S. Kiyohara et al., Science Adv. (2016) 2, e1600746

S. Kiyohara et al., Jpn. J. Appl. Phys. 55 (2016) 045502

結晶界面インフォマティクス:仮想スクリーニングとは?

仮想スクリーニングとは(有機EL,電池材料探索) 膨大な候補の中から最安定なポイントを見つけたい う最適値探索問題

機械学習により計算コスト削減

結晶界面インフォマティクス:仮想スクリーニング

S. Kiyohara et al., Science Adv. (2016) 2, e1600746

結晶界面インフォマティクス:仮想スクリーニング

S. Kiyohara et al., Science Adv. (2016) 2, e1600746

結晶界面インフォマティクス:仮想スクリーニング

12 GBs

Σ25(043),Σ25(071) Σ29(052),Σ29(073) Σ37(061),Σ37(075) Σ41(054),Σ41(091),Σ53(072),Σ53(095),Σ61(0 11 1),Σ125(0 11 2)

were "predicted" from the regression results.

S. Kiyohara et al., Science Adv. (2016) 2, e1600746

結晶界面インフォマティクス:ベイズ最適化(Kriging)

Kriging: ガウス過程回帰+ベイズ最適化による空間補完法 → 地下資源探索などに利用

実測と推定(予測)を繰り返して効率的に最適値を探索 → 最適値探索問題に非常に有効

結晶界面インフォマティクス:ベイズ最適化(Kriging)

<u>Cu [001] (210) Σ5 GB</u>

全候補計算

Kriging method

GB energy=0.96J/m² 計算回数(候補構造)=16,983回 (最初のランダム探索20回含む) Krigingにより200 倍 高い効率で最安定構造を決定!

S. Kiyohara et al., Jpn. J. Appl. Phys. 55 (2016) 045502

界面研究を加速=**構造決定の過程を加速** 構造決定の過程=**最適値探索問題**

▶ by 仮想スクリーニング

S. Kiyohara et al., Science Adv. (2016) 2, e1600746

"Universal" Predictor

S. Kiyohara et al., Jpn. J. Appl. Phys. 55 (2016) 045502

H. Oda et al., J. Phys. Soc. Jpn, 86 (2017) 123601

機械学習 + 計測

F doped LaFeOAs T. Tohei, T. Mizoguchi et al. APL 2009 T. Mizoguchi et al., ACS nano (2013)

T. Miyata et al., Science Adv. (2017)

機械学習によるスペクトル解釈

仮想スクリーニング:S. Kiyohara et al., Science Adv. (2016) 2, e1600746 ベイズ最適化(Kriging):S. Kiyohara et al., Jpn. J. Appl. Phys. 55 (2016) 045502 転移学習:H. Oda et al., J. Phys. Soc. Jpn, 86 (2017) 123601

液体の原子分解能計測:T. Miyata et al., Science Adv. 3 (2017) e1701546 気体のナノ振動計測:H. Katsukura et al., Sci. Rep. 7 (2017), 16434

Alumni

Funding:新学術領域「ナノ構造情報」,JST-PRESTO